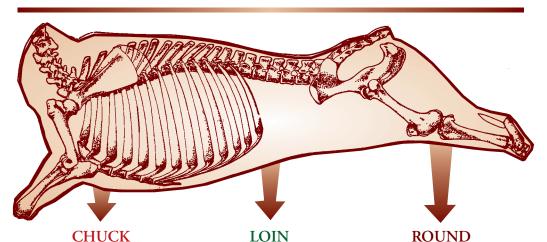


BACKGROUND

Postmortem aging is a critical management practice that can improve the consistency of beef tenderness (Tatum et al., 1999); however, the two most recent National Beef Tenderness Surveys revealed variability in length of postmortem aging time of beef cuts (Morgan et al., 1991; Brooks et al., 2000).

Previous studies have characterized improvements in tenderness associated with aging a variety of beef subprimals (Smith et al., 1978; Eilers et al., 1996). Researchers at Texas A&M University (Lorenzen et al., 1998), on behalf of the Texas Beef Council, developed an "aging index" that could be used by retailers for purposes of managing postmortem aging time of beef subprimal cuts to maximize beef palatability. That study recommended that ribeyes and shortloins be aged for at least 13 days; chuck rolls should be aged for at least 12 days; and bottom and top rounds should be aged at least 12 and 16 days, respectively. Researchers at Colorado State University (Mies et al., 1998), on behalf of the National Cattlemen's Beef Association (NCBA) and the Cattlemen's Beef Board, prepared a comprehensive review of scientific literature addressing the influence of postmortem aging time on beef tenderness for a number of different beef subprimals. They concluded that steaks from the rib be aged between 11 and 15 days; the chuck roll and clod for a minimum of 12 and 11 days, respectively; striploin and top sirloin cuts for at least 14 and 21 days, respectively; and top and bottom round cuts for a minimum of 16 and 12 days, respectively (Mies et al., 1998).

One of the key strategies employed by NCBA to increase beef demand has been to increase utilization of muscles from the chuck and round through value-added and further-processed beef products. To successfully promote use of chuck and round muscles, the National Cattlemen's Beef Association's muscle profiling research produced a complete database that characterizes the physical, chemical, and palatability traits of several individual beef muscles. That research has identified several individual muscles that possess desirable tenderness and/or flavor attributes and resulted in development of a product line of moderately priced cuts from the underutilized chuck and round (NCBA, 2000). In 2001, NCBA introduced the *Beef Value Cuts* program, involving use of 14 single-muscle cuts that offered easy preparation, greater consistency, and more lean-product options for beef consumers (CBB, 2003).


Current industry aging specifications are only applicable to beef subprimal cuts, not individual muscles within subprimal cuts and, to date, the effect of USDA Quality Grade on aging recommendations has not been determined.

The success of single-muscle utilization has created the need to establish aging guidelines for individual muscles of different USDA Quality Grades. To identify these aging times, the National Cattlemen's Beef Association commissioned researchers at Colorado State University to conduct a study to characterize postmortem aging of fresh (never frozen) individual beef muscles of two different quality grades (upper 2/3 USDA Choice and USDA Select).

HOW THE STUDY WAS CONDUCTED

Over a seven-month period, researchers selected 40 USDA Select and 40 upper two-thirds USDA Choice (Premium Choice) beef carcasses from a packing plant located in Northeast Colorado. Two days after harvest (two days postmortem), ten subprimals were removed from each carcass during in-plant fabrication (Figure 1). Beef subprimals then were transported to the Colorado State University Meat Laboratory and fabricated into individual muscles (Figure 1). Each beef muscle was cut into seven one-inch thick steaks and each steak was assigned to one of the following postmortem aging periods: 2, 4, 6, 10, 14, 21 or 28 days. All steaks were vacuum-sealed and stored at 36°F (2°C) during aging. Following completion of the assigned aging period, steaks were removed from storage (never frozen), cooked on a double-sided electric grill to a peak internal temperature of 160°F (71°C) and, then, measured to determine Warner-Bratzler shear force (WBSF). Warner-Bratzler shear force assesses the tenderness of meat by measuring the amount of force in kilograms necessary to shear multiple 1/2 - inch core samples from each steak evaluated.

FIGURE 1: BEEF SUBPRIMALS AND INDIVIDUAL MUSCLES

CIIC C.	
SUBPRIMAL	IMPS
Chuck Roll	116 A
Shoulder Clod	114
Chuck Tender	116 B

SUBPRIMAL	IMPS
Sirloin	181
Striploin	180
Tenderloin	189 A

KOUN	D
SUBPRIMAL	IMPS
Bottom Round	171 B
Top Round	169 A
Eye of Round	171 C
Knuckle	167

CUI	ICK
CIII	

CHUCK ROLL 116 A

Complexus (CP) Serratus ventralis (SV) Spinalis dorsi (SP)

SHOULDER CLOD 114

Infraspinatus (IF) Teres major (TM) Triceps brachii (TB)

CHUCK TENDER 116 B

Supraspinatus (SU)

LOIN

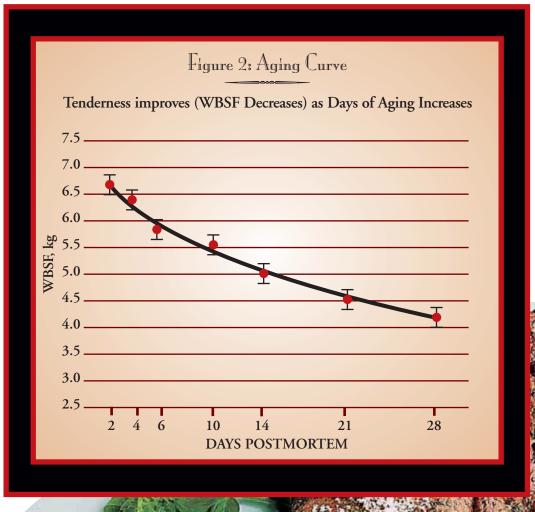
Gluteus medius (GM) Tensor fasciae latae (Tri-tip) (TF)

SIRLOIN 181

STRIPLOIN 180 Longissimus dorsi (LD)

TENDERLOIN 189 A Psoas major (PM)

ROUND


BOTTOM ROUND 171 B Biceps femoris (BF)

TOP ROUND 169 A Semimembranosus (SM)

EYE OF ROUND 171C Semitendinosus (ST)

KNUCKLE 167

Rectus femoris (RF) Vastus lateralis (VL) Vastus medialis (VM) Differences in tenderness (WBSF values) caused by the effects of muscle, USDA Quality Grade, and length of postmortem aging period were evaluated using statistical models (PROC MIXED: SAS Inst. Inc., Cary, NC). To characterize the change in tenderness from 2 to 28 days postmortem, "aging curves" (Figure 2) were developed for each muscle within each of the two quality grades (PROC NLIN: SAS Inst. Inc., Cary, NC).

Warner-Bratzler
shear force
assesses the
tenderness of
meat by
measuring the
amount of force
in kilograms
necessary to
shear multiple
1/2 - inch core
samples from
each steak
evaluated.

INITIAL FINDINGS

Researchers found that differences in postmortem tenderization are expressed as differences in:

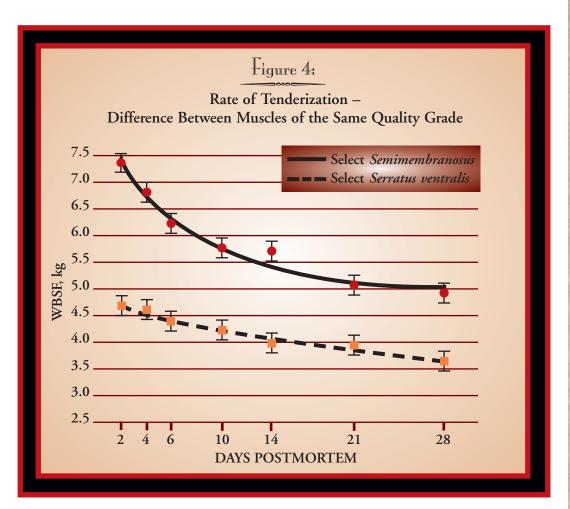
- 1) **Initial Tenderness:** WBSF of the muscle before aging (2 days postmortem).
- 2) **Aging Response:** The overall change in WBSF that occurs during aging (from day 2 through day 28).
- 3) Rate of Tenderization: The daily change in WBSF during aging.

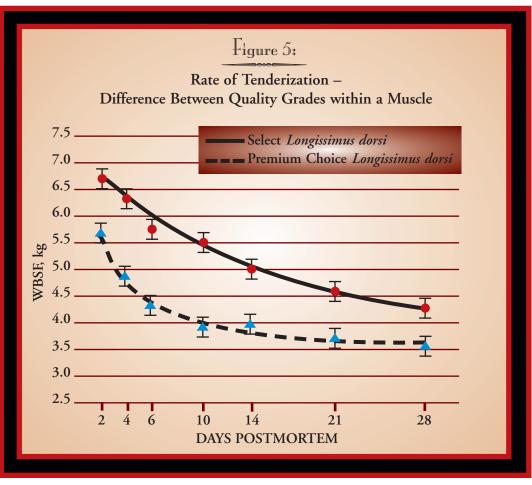
Initial tenderness values (2-day WBSF) and aging responses identify the improvement in tenderness that can be achieved through postmortem aging (Figure 3). Rate of tenderization characterizes the speed at which improvement in shear force is made. Warner-Bratzler shear force values at 2 days postmortem (initial tenderness) differed among muscles and between quality grades (Figure 3). Likewise, the changes in WBSF during aging (aging response and rate of aging) depended on both individual muscle and USDA Quality Grade (Figures 3 - 5). Correspondingly, both muscle and quality grade should be considered when developing beef aging protocols.

Figure 3: I	NITIAL	TENDERNESS	AND A	AGING.	RESPONSE
-------------	--------	------------	-------	--------	----------

	Premium US	DA Choice	USDA	Select
Muscle	Initial tenderness ^a	Aging responseb	Initial tenderness ^a	Aging responseb
Biceps femoris - long head	5.08	Low	5.86	Moderate
Complexus	5.39	Moderate	6.03	Moderate
Gluteus medius	5.39	Moderate	6.18	Moderate
Infraspinatus	4.48	Moderate	4.75	Moderate
Longissimus dorsi	5.63	Moderately high	6.66	High
Psoas major	4.28	Moderate	4.56	Moderate
Rectus femoris	4.92	Moderately low	5.33	Moderate
Semimembranosus	5.96	Moderate	7.34	High
Semitendinosus	6.10	Moderate	6.32	Moderate
Serratus ventralis	4.11	Moderately low	4.68	Moderately low
Spinalis dorsi	4.54	Moderately low	4.83	Moderate
Supraspinatus	5.83	Moderate	5.97	Moderate
Tensor fasciae latae	4.66	Moderately low	5.02	Moderate
Teres major	4.16	Moderately low	_ c	_c
Triceps brachii - long head	5.29	Moderate	5.67	Moderate
Vastus lateralis	5.70	Moderate	6.18	Moderate
Vastus medialis	5.60	Moderately high	5.71	Moderately high

^aInitial tenderness (kg) = WBSF 2 days postmortem. 1 kg = 2.2046 lb.

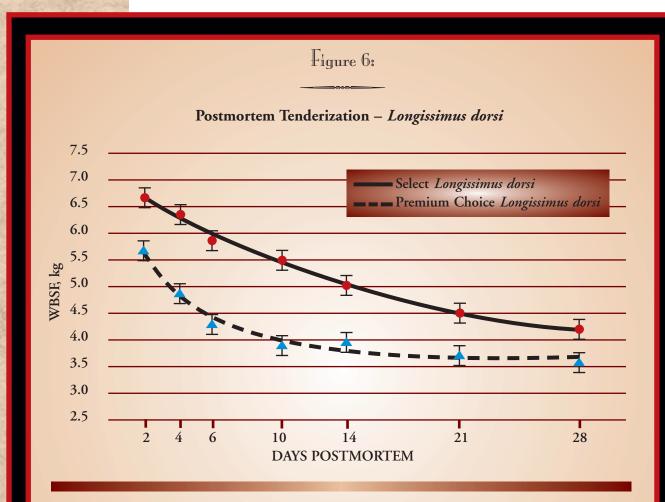

KEY


High	Moderately high	Moderate	Moderately low	Low
≥ 2.2 kg	2.1 to 1.8 kg	1.7 to 1.1 kg	1.0 to 0.7 kg	≤ 0.6 kg

Categories established by standard deviations from the grand mean

^bAging response = Change in WBSF from 2 to 28 days postmortem.

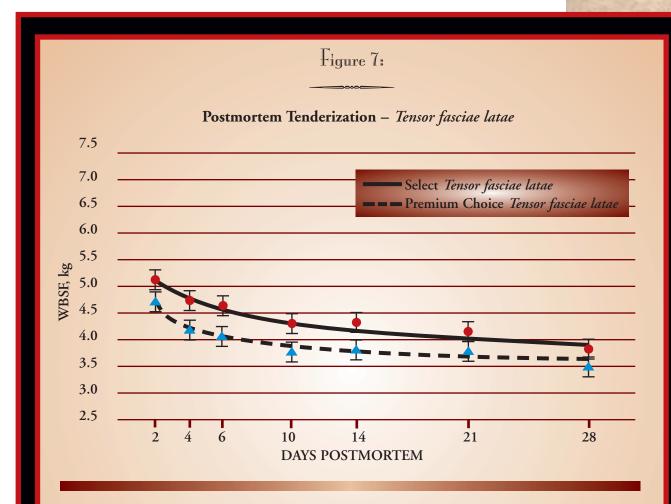
^{*}Postmortem tenderization of the Select *Teres major* could not be characterized.



POSTMORTEM AGING MANAGEMENT

Postmortem aging periods can be established by:

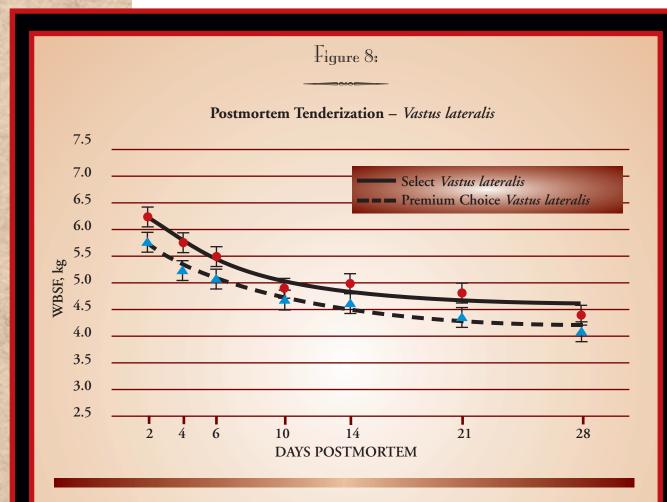
- 1) Determining the amount of time (days postmortem) required for a majority of the aging response to be completed.
- 2) Determining when a muscle has achieved a targeted WBSF value.


Considering both aging response and rate of tenderization, the time required for a majority of the aging response to be achieved was established for individual muscles of each quality grade (Figure 9). Based on this approach, the *Longissimus dorsi* requires substantially different aging periods depending on quality grade (Figure 6). A Select *Longissimus dorsi* will complete greater than 90% of its 2.5 kg aging response from 21 to 28 days

WBSF of *Longissimus dorsi* at 2-d postmortem, change in WBSF through 28-d postmortem, and the percentage of that change complete at each of 6 aging periods

				Days Postmortem				
Grade	2-d WBSF	Aging response (kg)	4	6	10	14	21	28
Select	6.66	2.5	14.7	27.6	49.1	65.8	86.6	100.0
Premium Cho	oice 5.63	2.0	38.5	62.2	85.7	94.7	99.2	100.0

postmortem, while a Premium Choice *Longissimus dorsi* has completed approximately 95% of a 2.0 kg aging response by day 14. Like the *Longissimus dorsi*, the Select *Tensor fasciae latae* (Tri-tip) requires a longer aging period than a Premium Choice Tri-tip. Select and Premium Choice Tri-tips have similar aging responses (approximately 1.0 kg); however, almost 95% of this change in shear force is attained at 14 days postmortem for Premium Choice Tri-tips, whereas it takes greater than 21 days to attain a 95% change in shear force for Select Tri-tips (Figure 7). Although some Select muscles require longer aging periods than their Premium Choice counterparts, a muscle may require similar aging periods for both quality grades. The *Vastus lateralis* (from the knuckle) has an aging response of approximately 1.5 kg, and completed greater than 90% of this change in shear force by 21 days postmortem, regardless of quality grade (Figure 8).



WBSF of *Tensor fasciae latae* at 2-d postmortem, change in WBSF through 28-d postmortem, and the percentage of that change complete at each of 6 aging periods

				Days Postmortem				
Grade	2-d WBSF	Aging response (kg)	4	6	10	14	21	28
Select	5.02	1.1	21.9	39.3	63.9	79.2	93.7	100.0
Premium Choice	4.67	1.0	36.9	60.3	84.3	93.9	99.0	100.0

Aging times that ensure that a majority of the aging response has been achieved are listed for individual muscles of each quality grade in Figure 9. These aging periods are based on the percentage of aging response that has been completed. Aging times (days postmortem) for muscles with high, moderately high, moderate, moderately low, and low aging responses correspond to the day that at least 96%, 95%, 94%, 90%, and 85% of the aging response is complete, respectively. Aging periods longer than those identified (up to 28 days) in Figure 9 will result in an additional ≤ 0.1 kg decrease in WBSF.

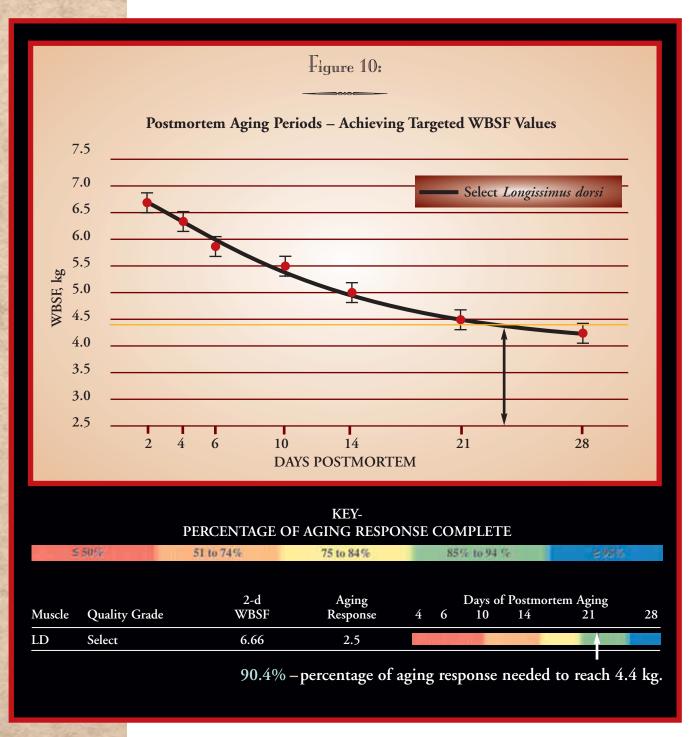
Aging periods displayed in Figure 9 ensure that a majority of the aging response has been achieved for an individual muscle, regardless of initial tenderness; however, information regarding postmortem tenderization of individual muscles obtained from this study (Figures 11- 13) may also be used to manage the length of aging time by determining

WBSF of *Vastus lateralis* at 2-d postmortem, change in WBSF through 28-d postmortem, and the percentage of that change complete at each of 6 aging periods

				Days Postmortem				
Grade	2-d WBSF	Aging response (kg)	4	6	10	14	21	28
Select	6.18	1.6	25.5	44.7	69.9	84.1	95.7	100.0
Premium Choic	e 5.70	1.5	22.9	40.8	65.6	80.7	94.0	100.0

when a muscle has achieved a targeted WBSF value. To determine the amount of postmortem aging that will be required for a muscle to reach a targeted shear force value, initial tenderness, aging response, and rate of tenderization must all be considered. For example, if a WBSF value of 4.4 kg is established as a desirable endpoint for the Select *Longissimus dorsi*, 23 days of postmortem aging will be required to achieve a 2.3 kg decrease in WBSF (2-d WBSF = 6.7 kg; target WBSF = 4.4 kg)(Figure 10). Several research studies have attempted to examine the impact of differences in WBSF on consumer acceptance of steaks (Miller et al., 2001; Lorenzen et al., 2003). Platter et al. (2003) reported that the predicted probability of consumers finding a *Longissimus* steak acceptable 50 and 68% of the time was at approximate WBSF values of 4.4 and 3.7 kg, respectively. Although these values can be used to help establish optimal endpoints for

Postmortem Aging Periods


		Premium US	DA Choice	USDA	Select
Muscle	Associated Name	Aging Response ^a	Aging Period ^b	Aging Response ^a	Aging Period ^b
Round					
Biceps femoris Bot - long head	tom/outside round, flat	0.5	6	1.1	26
Rectus femoris	Round tip center	1.0	15	1.3	25
Semimembranosus	Top/inside round	1.4	16	2.3	23
Semitendinosus	Eye of round	1.4	18	1.6	23
Vastus lateralis	Round tip side	1.5	21	1.6	20
Vastus medialis	Round tip bottom	1.8	21	1.9	25
Loin					
Gluteus medius	Top sirloin	1.1	21	1.6	27
Longissimus dorsi	Striploin	2.0	15	2.5	26
Psoas major	Tenderloin	1.1	25	1.3	27
Tensor fasciae latae	Tri-tip	1.0	12	1.1	22
Chuck					
Complexus		1.5	23	1.7	27
Infraspinatus '	Top blade, flat iron	1.4	18	1.4	25
Serratus ventralis	Chuck under blade	0.9	25	1.0	24
Spinalis dorsi		1.0	13	1.3	23
Supraspinatus	Chuck/mock tender	1.4	14	1.6	23
Teres major Sl	oulder/petite tender	0.7	21		
Triceps brachii Cloo - long head	d heart, shoulder center	1.4	16	1.6	21

^aAging response (kg) = WBSF at 2 d postmortem - WBSF at 28 d postmortem; 1 kg = 2.2046 lb.

bAging periods correspond to the day that a majority of the aging response is complete. Aging times (days postmortem) for muscles with aging responses ≥ 2.2 kg, 2.1 to 1.8 kg, 1.7 to 1.1 kg, 1.0 to 0.7 kg, and ≤ 0.6 kg correspond to the day that at least 96%, 95%, 94%, 90%, and 85% of the aging response is complete, respectively.

Longissimus dorsi muscles, it is unknown if these WBSF values accurately reflect consumer acceptance of steaks derived from other beef muscles.

In addition to allowing the description of postmortem aging patterns for differing beef muscles, information from this study regarding the relative tenderness (WBSF values) of individual muscles of differing quality grades may be used to determine appropriate uses for specific muscles and to identify muscles that would be suitable for an intended use (Beef Muscle User Guide). Again, the impact of differences in WBSF on consumer acceptability has been investigated extensively for *Longissimus* steaks, but it is unknown if these changes in WBSF would affect consumer acceptance similarly within and among different muscles. Platter et al. (2003) suggested that differences in WBSF of 0.2 kg and 0.5 kg would result in changes of 4 to 5% and 9 to 12 % of consumer acceptance, respectively.

Figures 11, 12 and 13:

Postmortem Tenderization of Muscles from the Round, Loin and Chuck

Warner-Bratzler shear force (WBSF) at two days postmortem (kg), the change in shear force through 28 days postmortem (aging response), and a color corresponding to the percentage (%) of that change complete at each of six postmortem aging periods

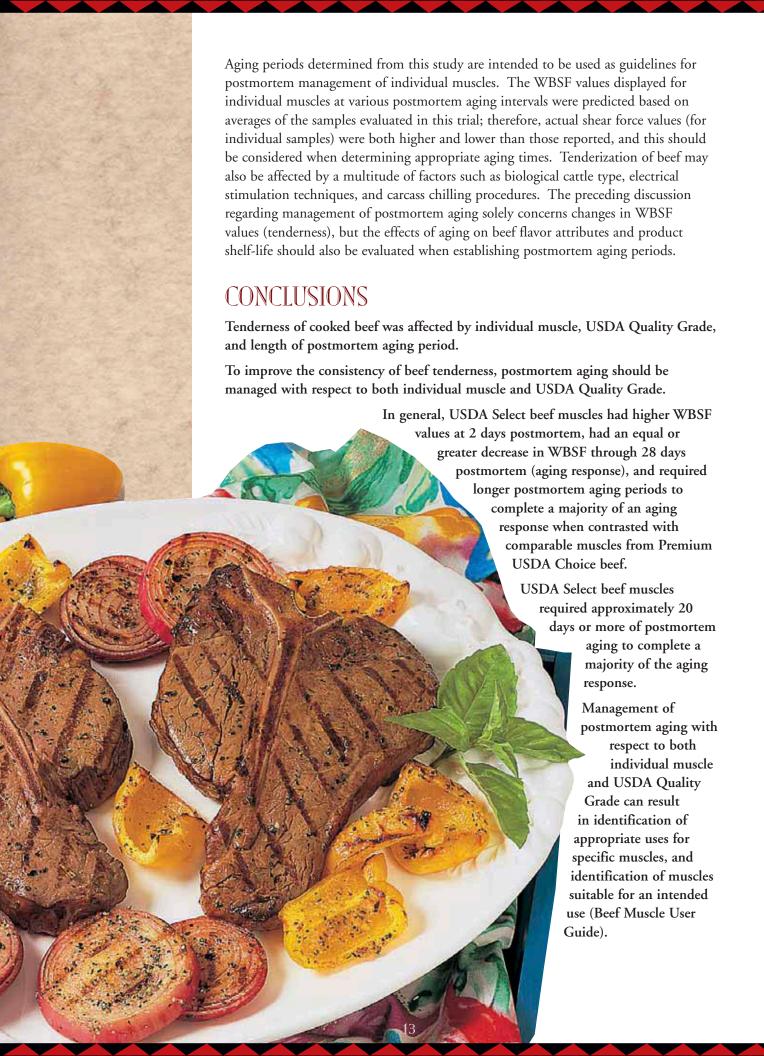
KEY-PERCENTAGE OF AGING RESPONSE COMPLETE

≤50%		51 to 74%	75 to 84%		851	e to 94	2.佐然		
		MUSCI	ES FROM TH	E RO	UNI)			
	2-d Aging Days of Postmort								
Muscle ^a	Quality Grade	$WBSF^b$	Response ^c	4	6	10	14	21	28
BF	Premium Choice	5.08	0.5						
BF	Select	5.86	1.1						
RF	Premium Choice	4.92	1.0				-		-
RF	Select	5.33	1.3						
SM	Premium Choice	5.96	1.4						
SM	Select	7.34	2.3						
ST	Premium Choice	6.10	1.4				1		
ST	Select	6.32	1.6						
VL	Premium Choice	5.70	1.5						
VL	Select	6.18	1.6		-				
VM	Premium Choice	5.60	1.8						
VM	Select	5.71	1.9						

^aBF= Biceps femoris; RF= Rectus femoris; SM= Semimembranosus; ST= Semitendinosus; VL = Vastus lateralis; VM = Vastus medialis. ^b2 d WBSF (kg); 1 kg= 2.2046 lb. ^cAging response = WBSF at 2 d postmortem – WBSF at 28 d postmortem.

MUSCLES FROM THE LOIN

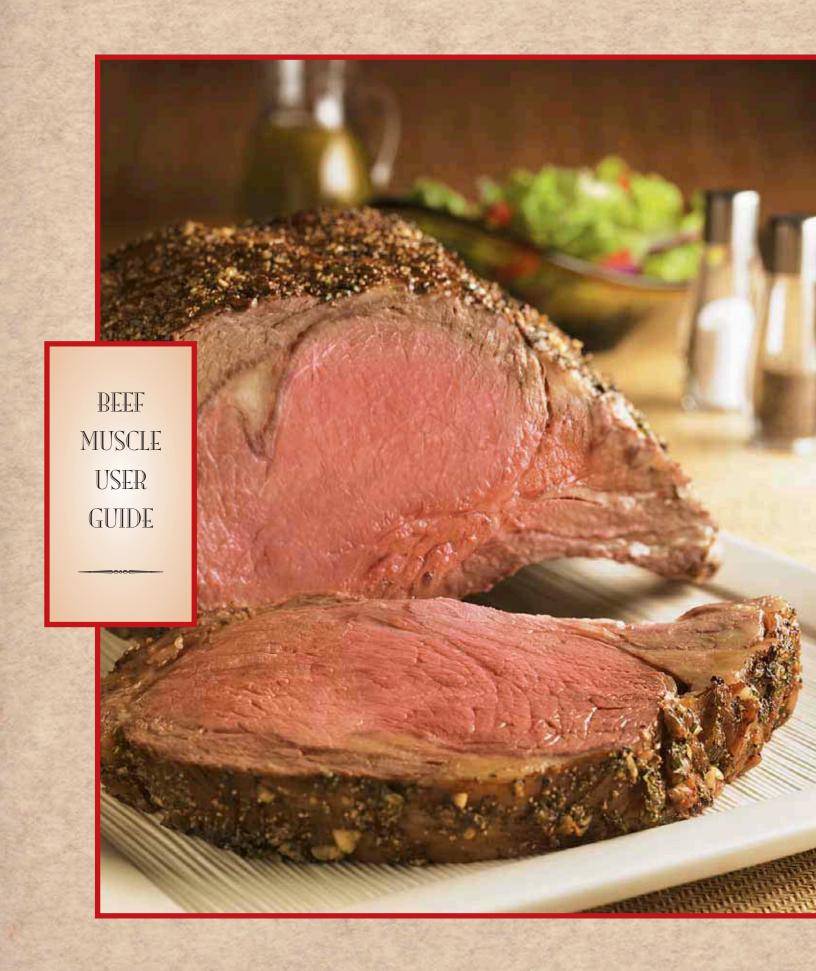
		2-d	Aging		Days of Postmortem Aging				
Muscle ^a	Quality Grade	WBSF ^b	Response ^c	4	6	10	14	21	28
GM	Premium Choice	5.39	1.1		-				
GM	Select	6.18	1.6						
LD	Premium Choice	5.63	2.0			-			
LD	Select	6.66	2.5						
PM	Premium Choice	4.28	1.1			-			
PM	Select	4.56	1.3						
TF	Premium Choice	4.66	1.0						
TF	Select	5.02	1.1						


^aGM = Gluteus medius; LD = Longissimus dorsi; PM = Psoas major; TF = Tensor fasciae latae. ^b2 d WBSF (kg); 1 kg = 2.2046 lb. ^cAging response = WBSF at 2 d postmortem – WBSF at 28 d postmortem.

MUSCLES FROM THE CHUCK

	WOOCLES I ROW THE CHOCK										
		2-d	Aging			Days of					
Musclea	Quality Grade	$WBSF^b$	Response ^c	4	6	10	14	21	28		
CP	Premium Choice	5.39	1.5								
CP	Select	6.03	1.7								
IF	Premium Choice	4.48	1.4				-				
IF	Select	4.75	1.4		-						
SP	Premium Choice	4.54	1.0				_				
SP	Select	4.83	1.3								
SU	Premium Choice	5.83	1.4								
SU	Select	5.97	1.6								
SV	Premium Choice	4.11	0.9								
SV	Select	4.68	1.0								
TB	Premium Choice	5.29	1.4								
TB	Select	5.67	1.6								
TM	Premium Choice	4.16	0.7								
TM^d	Select	_	_								

^aCP = Complexus; IF = Infraspinatus; SP = Spinalis dorsi; SU = Supraspinatus; SV = Serratus ventralis; TB = Triceps brachii; TM = Teres major. ^b2 d WBSF (kg)=2.2046 lb. ^cAging response = WBSF at 2 d postmortem – WBSF at 28 d postmortem.


^dTenderization of Select *Teres major* could not be characterized.

REFERENCES

- Brooks, J. C., J. B. Belew, D. B. Griffin, B. L. Gwartney, D. S. Hale, W. R. Henning,
 D. D. Johnson, J. B. Morgan, F. C. Parrish, Jr., J. O. Reagan, and J. W. Savell. 2000.
 National Beef Tenderness Survey-1998. J. Anim. Sci. 78:1852-1860.
- CBB. 2003. Beef Value Cuts. *New Opportunities for the Beef Industry*. Cattlemen's Beef Board. Centennial, CO.
- Eilers, J. D., J. D. Tatum, J. B. Morgan, and G. C. Smith. 1996. Modification of early-postmortem muscle pH and use of postmortem aging to improve beef tenderness. J. Anim. Sci. 74:790-798.
- Lorenzen, C. L., B. H. Weatherly, and J. W. Savell. 1998. Determination of an aging index. Final Report to the Texas Beef Council. Department of Animal Science, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX.
- Lorenzen, C. L., R. K. Miller, J. F. Taylor, T. R. Neeley, J. D. Tatum, J. W. Wise,M. J. Buyck, J. O. Reagan, and J. W. Savell. 2003. Beef Customer Satisfaction:Trained sensory panel ratings and Warner-Bratzler shear force values. J. Anim. Sci. 81:143-149.
- Mies, P. D., K. E. Belk, J. D. Tatum, and G. C. Smith. 1998. Effects of postmortem aging on beef tenderness, and aging guidelines to maximize tenderness of different beef subprimal cuts. Beef Program Report, Program in Meat Science, Colorado State University, Fort Collins, CO.
- Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crockett, and L. C. Hoover. 2001. Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci. 79:3062-3068.
- Morgan, J. B., J. W. Savell, D. S. Hale, R. K. Miller, D. B. Griffin, H. R. Cross, and S. D. Shackelford. 1991. National Beef Tenderness Survey. J. Anim. Sci. 69:3274-3283.
- NCBA. 2000. Muscle Profiling. National Cattlemen's Beef Association, Centennial, CO.
- Platter, W. J., J. D. Tatum, K. E. Belk, P. L. Chapman, J. A. Scanga, and G. C. Smith. 2003. Relationships of consumer sensory ratings, marbling score, and shear force value to consumer acceptance of beef strip loin steaks.

 J. Anim. Sci. 81:2741-2750.
- Smith, G. C., G. R. Culp, and Z. L. Carpenter. 1978. Postmortem aging of beef carcasses. J. Food Sci. 43:823-826.
- Tatum, J. D., K. E. Belk, M. H. George, and G. C. Smith. 1999. Identification of quality management practices to reduce the incidence of retail beef tenderness problems: Development and evaluation of a prototype quality system to produce tender beef. J. Anim. Sci. 77: 2112-2118.

BEEF ROUND IMPS 158

BOTTOM ROUND 171B

TOP ROUND 169 A

EYE OF ROUND 171C

KNUCKLE 167

Biceps femoris (BF)

Semimembranosus (SM)

Semitendinosus (ST)

Rectus femoris (RF) Vastus lateralis (VL) Vastus medialis (VM)

PREMIUM USDA CHOICE

USDA SELECT

Wholesale Cut	IMPS	Muscle	Weight	Aging Response ^a		WBSF at Aging Time, kg	Aging Response ^a	Aging Time ^b , d	WBSF at Aging Time, kg
Bottom Round	171 B	Biceps femoris	8.6 - 13.3	Low	6	4.64	Moderate	26	4.85
Top Round	169 A	Semimembranosus	7.6 - 11.0	Moderate	16	4.63	High	23	5.09
Eye of Round	171 C	Semitendinosus	3.7 - 5.4	Moderate	18	4.75	Moderate	23	4.82
Knuckle	167	Rectus femoris	2.3 - 3.3	Moderately low	15	4.04	Moderate	25	4.08
		Vastus lateralis	2.9 - 4.2	Moderate	21	4.32	Moderate	20	4.67
		Vastus medialis	0.8 - 1.3	Moderately hig	h 21	3.84	Moderately hi	gh 25	3.93

^aAging response: High = ≥ 2.2 kg;

Moderately high = 2.1 to 1.8 kg;

Moderate = 1.7 to 1.1 kg;

Moderately low = 1.0 to 0.7 kg;

Low = ≤ 0.6 kg.

^bAging time corresponds to the day that at least 96%, 95%, 94%, 90%, and 85% of the aging response is complete for muscles with high, moderately high, moderate, moderately low, and low aging responses, respectively.

BEEF LOIN IMPS 172

SIRLOIN 181 STRIPLOIN 180 TENDERLOIN 189 A

Gluteus medius (GM) Tensor fasciae latae (Tri-tip) (TF)

Longissimus dorsi (LD)

Psoas major (PM)

			Premium	Premium USDA Choice			USDA SELECT			
Wholesale Cut	IMPS	Muscle	Aging A	0.0	WBSF at Aging Time, kg	Aging Response ^a	Aging Time ^b , d	WBSF at Aging Time, kg		
Sirloin	181	Gluteus medius	Moderate	21	4.33	Moderate	27	4.65		
		Tensor fasciae latae	Moderately low	12	3.77	Moderate	22	3.98		
Striploin	180	Longissimus dorsi	Moderately high	15	3.75	High	26	4.28		
Tenderloin	189A	Psoas major	Moderate	25	3.26	Moderate	27	3.26		

^aAging response: High = ≥ 2.2 kg;

Moderately high = 2.1 to 1.8 kg;

Moderate = 1.7 to 1.1 kg;

Moderately low = 1.0 to 0.7 kg;

Low = ≤ 0.6 kg.

^bAging time corresponds to the day that at least 96%, 95%, 94%, 90%, and 85% of the aging response is complete for muscles with high, moderately high, moderate, moderately low, and low aging responses, respectively.

BEEF CHUCK, SQUARE-CUT IMPS 113

CHUCK ROLL 116 A

SHOULDER CLOD 114

CHUCK TENDER 116 B

Complexus (CP) Serratus ventralis (SV) Spinalis dorsi (SP)

Infraspinatus (IF) Teres major (TM) Triceps brachii (TB)

Supraspinatus (SU)

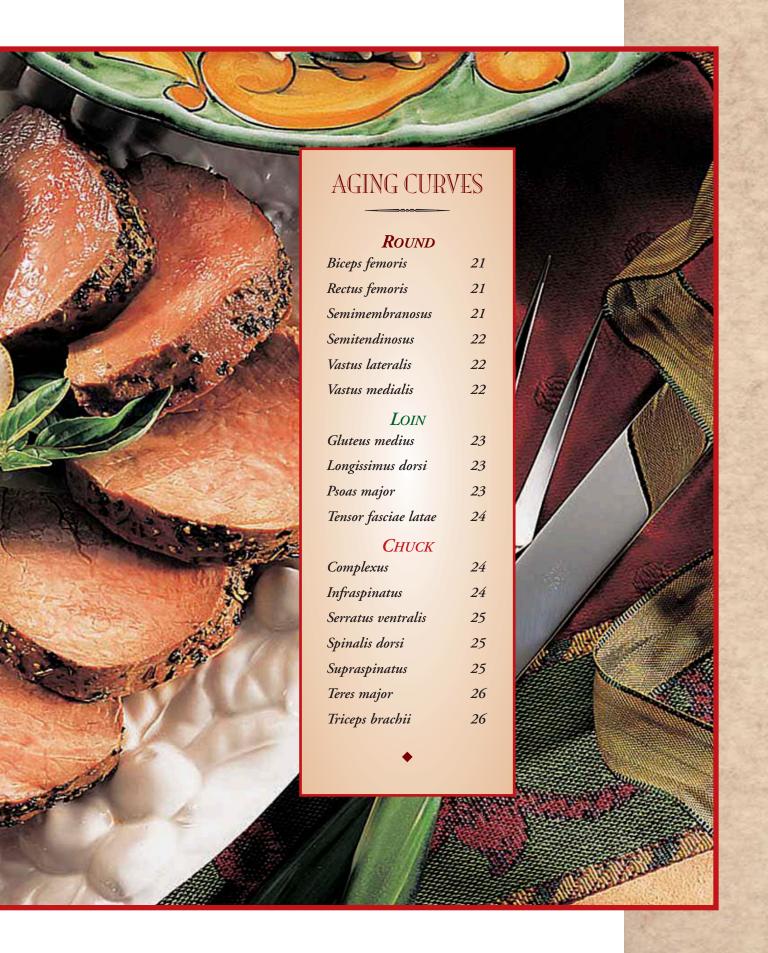
PREMIUM USDA CHOICE

USDA SELECT

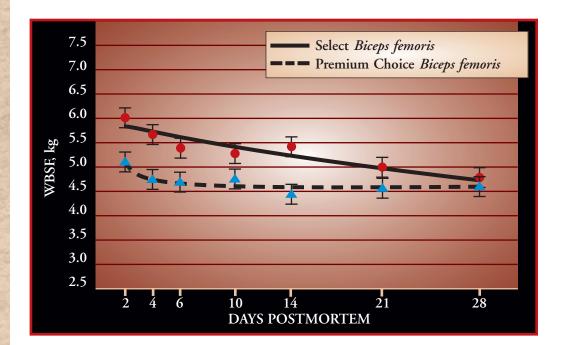
Wholesale Cut	IMPS	Muscle	Weight	Aging Response ^a T		WBSF at Aging Time, kg	Aging Response ^a		WBSF at Aging Time, kg
Chuck Roll	116 A	Complexus	2.0 - 3.2	Moderate	23	3.98	Moderate	27	4.37
		Serratus ventrali	s 5.0 - 7.6	Moderately low	25	3.31	Moderately	low 24	3.76
		Spinalis dorsi	1.0 - 1.4	Moderately low	13	3.62	Moderate	23	3.65
Shoulder Clod	114	Infraspinatus	3.2 - 4.6	Moderate	18	3.19	Moderate	25	3.44
		Teres major	0.7 - 1.0	Moderately low	21	3.54	-	-	-
		Triceps brachii	5.7 - 8.3	Moderate	16	4.01	Moderate	21	4.16
Chuck Tender	116 B	Supraspinatus	2.2 - 3.1	Moderate	14	4.49	Moderate	23	4.48

^aAging response: High = ≥ 2.2 kg;

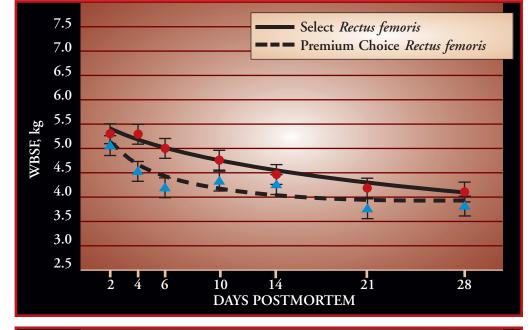
Moderately high = 2.1 to 1.8 kg;

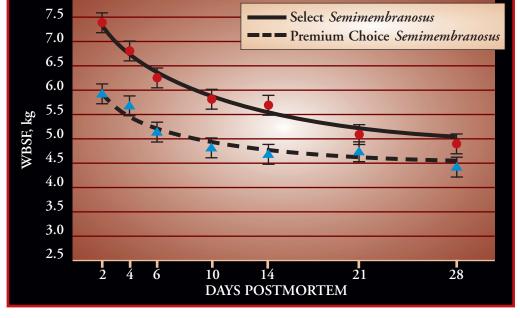

Moderate = 1.7 to 1.1 kg;

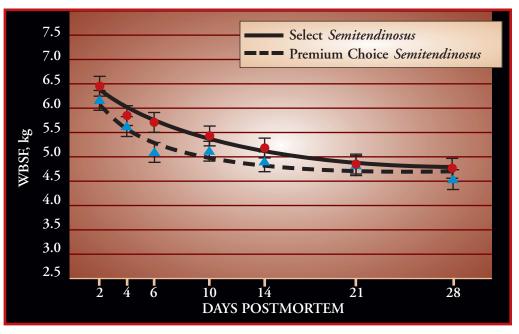
Moderately low = 1.0 to 0.7 kg;


Low = ≤ 0.6 kg.

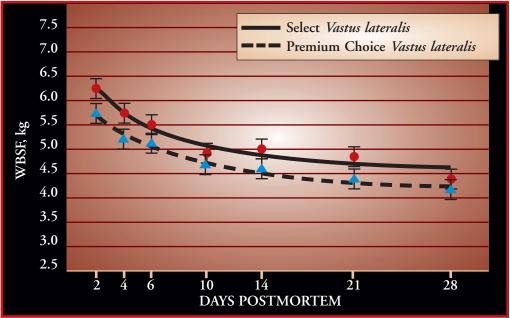
^bAging time corresponds to the day that at least 96%, 95%, 94%, 90%, and 85% of the aging response is complete for muscles with high, moderately high, moderate, moderately low, and low aging responses, respectively.



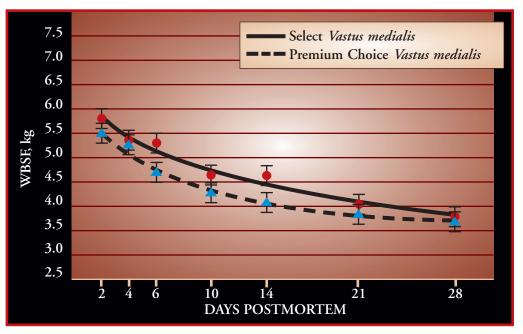

Biceps femoris



Rectus femoris

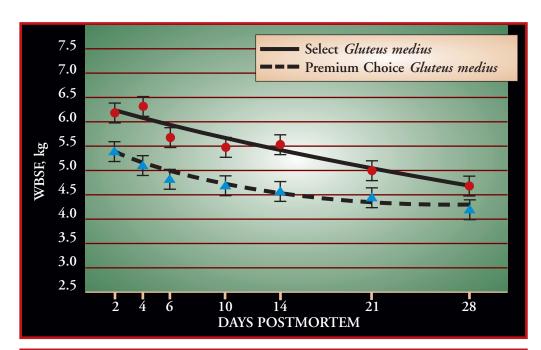


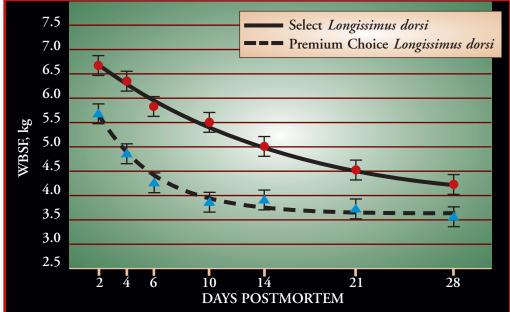
Semimembranosus

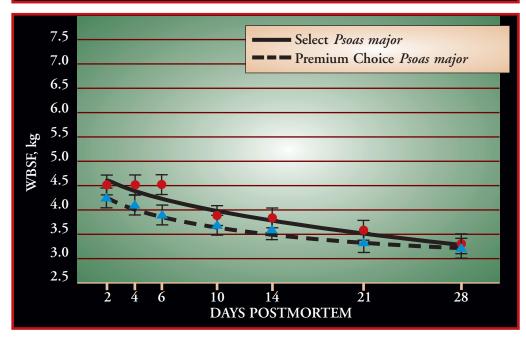


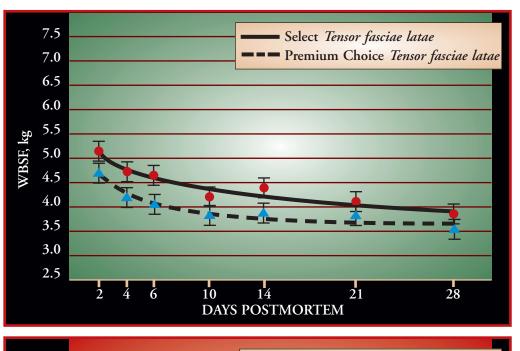
Semitendinosus

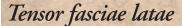
Vastus lateralis

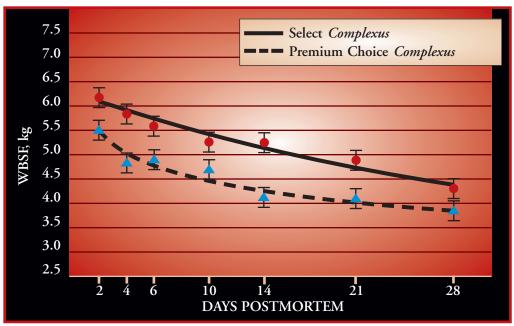


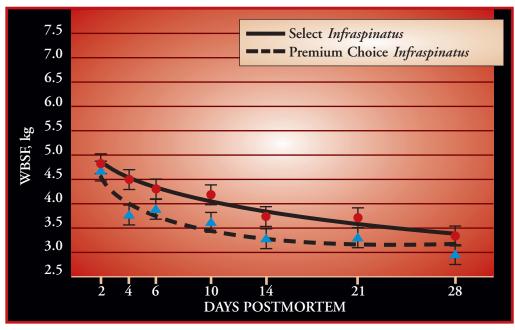

Vastus medialis


Gluteus medius

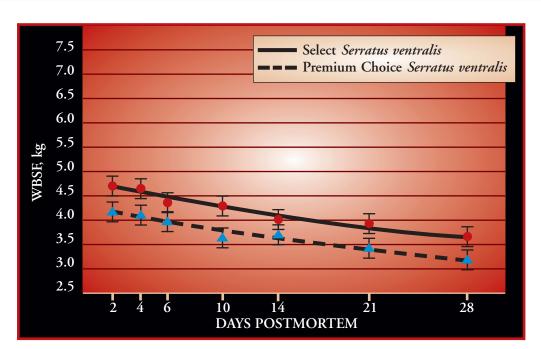

Longissimus dorsi

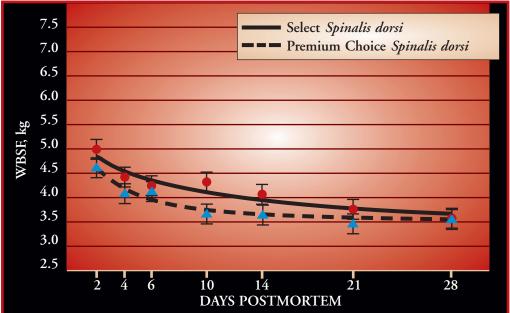

Psoas major

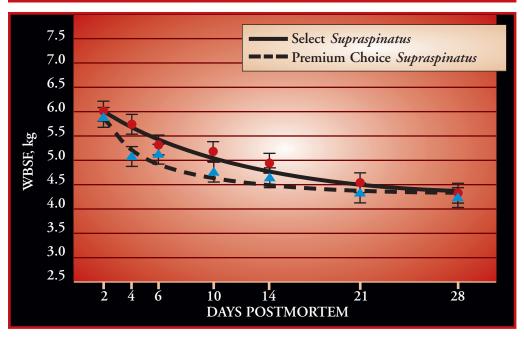


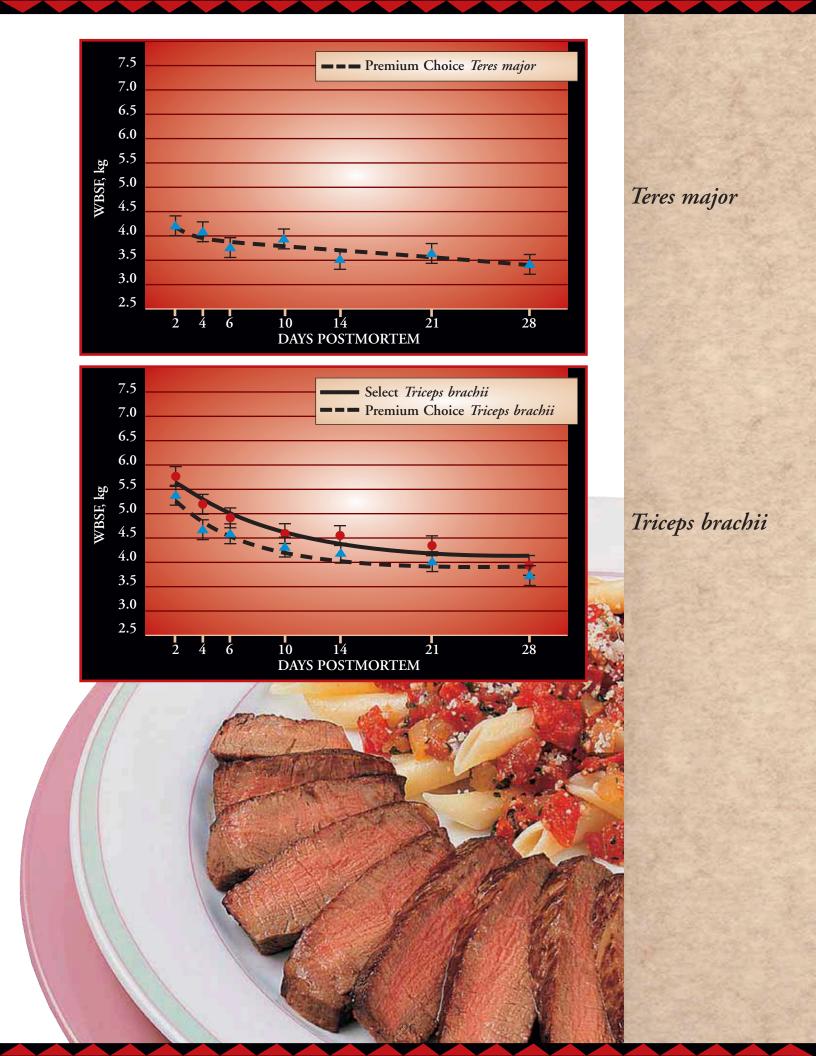


Complexus




Infraspinatus


Serratus ventralis


Spinalis dorsi

Supraspinatus

For more information contact:

NATIONAL CATTLEMEN'S BEEF ASSOCIATION

9110 East Nichols Avenue • Centennial, Colorado 80112-3450 • 303-694-0305 • www.beef.org

COPYRIGHT © 2006 CATTLEMEN'S BEEF BOARD & NATIONAL CATTLEMEN'S BEEF ASSOCIATION ALL RIGHTS RESERVED. PRINTED IN U.S.A. 4-2006 2,000 ITEM#12810