Summer and Winter Prevalence of Shiga Toxin–Producing *Escherichia coli* (STEC) O26, O45, O103, O111, O121, O145, and O157 in Feces of Feedlot Cattle

Diana M.A. Dewsbury, David G. Renter, Pragathi B. Shridhar, Lance W. Noll, Xiaorong Shi, Tiruvoor G. Nagaraja, and Natalia Cernicchiaro

Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.

Abstract

The United States Department of Agriculture Food Safety and Inspection Service has declared seven Shiga toxin–producing *Escherichia coli* (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, non-intact beef products. The objective of this study was to determine the prevalence of these seven serogroups and the associated virulence genes (Shiga toxin [*stx*1, *stx*2], and intimin [*eae*]) in cattle feces during summer (June–August 2013) and winter (January–March 2014) months. Twenty-four pen floor fecal samples were collected from each of 24 cattle pens, in both summer and winter months, at a commercial feedlot in the United States. Samples were subjected to culture-based detection methods that included enrichment, serogroup-specific immunomagnetic separation and plating on selective media, followed by a multiplex polymerase chain reaction for serogroup confirmation and virulence gene detection. A sample was considered STEC positive if a recovered isolate harbored an O gene, *stx*1, and/or *stx*2, and *eae* genes. All O serogroups of interest were detected in summer months, and model-adjusted prevalence estimates are as follows: O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), O145 (2.7%), and O157 (41.6%); however, most non-O157 isolates did not harbor virulence genes. The cumulative model-adjusted sample-level prevalence estimates of STEC O26, O103, O145, and O157 during summer (*n*=576) were 1.0, 1.6, 0.8, and 41.4%, respectively; STEC O45, O111, and O121 were not detected during summer months. In winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), and O121 (0.2%) were isolated; however, no virulence genes were detected in isolates from cattle feces collected during winter (*n*=576). Statistically significant seasonal differences in prevalence were identified for STEC O103 and O157 (*p*<0.05), but data on other STEC were sparse. The results of this study indicate that although non-O157 serogroups were present, non-O157 STEC were rarely detected in feces from the feedlot cattle populations tested in summer and winter months.

The study reported here in this Research Brief was not funded by the beef checkoff, but is made available to expand the usefulness of this checkoff-funded website for those interested in beef safety.