# **Project Summary**

**Product Quality** 

**Project Title:** Possible Quality Defects in Beef Caused by Multiple

**Applications of Antimicrobial Interventions** 

**Principle Investigator(s):** K. B. Harris, Ph.D.

**Institution(s):** Texas A&M University

**Completion Date:** May 2013

#### Background

With the United States Department of Agriculture – Food Safety and Inspection Service (USDA-FSIS) declaration of *Escherichia coli* O157:H7 and shiga-toxin producing *E. coli* (STEC) as adulterants in non-intact raw beef products and intact raw beef products intended for non-intact use, the addition of antimicrobial interventions has become standard procedure during beef harvest and further processing. The concept of using consecutive decontamination processes in beef packing plants as a means of improving the microbiological quality of beef carcasses is beneficial (Bacon et al., 2000) to reduce microbiological contamination of beef carcass surfaces that can occur during the beef harvest process. However, because most carcass decontamination treatments do not sterilize the carcass, microorganisms remaining on carcass surfaces can easily be transferred onto freshly cut surfaces during carcass fabrication, and subsequently carried through grinding operations (Pohlman et al., 2002).

Beef safety and quality are continuous challenges for the meat industry. With foodborne pathogens being of upmost concern, antimicrobial interventions are commonly used as a method to reduce the prevalence of pathogenic bacteria throughout the beef production process. A study conducted by Bacon et al. (2000) validated that sequential multiple hurdle interventions reduce bacteria on beef carcasses more effectively than any one intervention alone. The application of multiple interventions also can lead to the oxidation of fat and lean surfaces, which may ultimately affect the quality of ground beef products. In the past, ground beef processors have expressed concern related to the quality of beef raw materials, especially characteristics such as discoloration, off-odors, and flavors. In addition to the effectiveness of antimicrobial treatments, the impact of such treatments on meat quality factors such as color and odor (Pohlman et al., 2002) must also be considered. The objective of this research was to determine the effects of multiple applications of antimicrobial interventions on quality characteristics of beef.

### Methodology

Eight universities (Texas A&M University, Texas Tech University, California Polytechnic State University, University of Florida, University of Missouri, North Dakota State University, Oklahoma State University, and Penn State University) collected 10 types of beef steaks (Top Blade, bone-in Ribeye, boneless Ribeye, bone-in Top Loin, boneless Top Loin, T-Bone, Porterhouse, Top Sirloin, Top Round, and Bottom Round) from 12 US cities (Houston, TX; Tampa, FL; Seattle, WA; New York City, NY; Denver, CO; Las Vegas, NV; Los Angeles, CA; Philadelphia, PA; Kansas City, MO; San Francisco, CA; Atlanta, GA; Chicago, IL). In each city, retail chains comprising the top 33% of the market share were identified and contacted to provide four stores to sample per chain. Additionally, one club store was sampled per city. In five cities (Houston, TX; Tampa, FL; Denver, CO; Las Vegas, NV; Philadelphia, PA), three types of beef steaks (boneless Ribeye, boneless Top Loin, Top Sirloin) were collected from a foodservice establishment. Brand designation, marketing claims, enhancement with percentage pumped, sodium content, form of tenderization, and

any other important features were recorded on each steak, and each steak was measured for average external fat thickness and steak thickness. Approximately 60% of retail steaks (n = 1,319) were used for consumer sensory panels conducted at six universities, and the remainder of the retail steaks were used for Warner-Bratzler shear force. Foodservice steaks (n = 464) were divided in half and used for consumer sensory panels and Warner-Bratzler shear force. All steaks were cooked to an internal temperature of 70°C. Consumer sensory panels rated samples for overall like, overall like of tenderness, level of tenderness, overall like of flavor, level of beef flavor, overall like of juiciness, and level of juiciness. Four antimicrobial treatment combinations (hot water applied to hot carcass followed by hot carcass lactic acid application; hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter lactic acid spray; hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a prefabrication cold forequarter acidified sodium chlorite spray; hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter Beefxide spray); in addition to a control (hot carcass lactic acid spray only), were used in this study. Following carcass treatments (Figure 1), trimmings were assigned to one of four treatment groups (acidified sodium chlorite, Beefxide, lactic acid or control). Trimmings were sprayed following forequarter fabrication, and were subsequently held in cold storage for 48 h prior to grinding. Ground beef patties were produced from each trimming subgroup (n = 40) and designated for shelf-life (Figure 2), consumer panel, or trained panel evaluation. Beef patty temperature, pH and color (L\*, a\*, b\*) measurements were taken on the day of patty production, in addition to daily color measurements taken over the 5 d shelf-life period.

## **Findings**

Overall, no single treatment combination appeared to significantly influence consumer perception (Figures 1, 2, and 3) or instrumental measurements (Table 1) of beef patty quality. While some visual darkening of patty color occurred by the completion of the shelf-life period, few significant changes were seen in color space values for each treatment combination (Table 2).

### **Implications**

In general, findings from this study support that food safety interventions, while effective in reducing microbiological counts on product surfaces, do not negatively impact beef patty quality.



Table 1. Least squares means stratified by carcass and trimmings treatment<sup>A</sup> combinations for beef patty temperature (°C), pH, and CIE color space values ( $L^*$ ,  $a^*$ ,  $b^*$ ).

| Treatment combinations                                                                          | Beef patty quality parameters |          |           |          |            |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------|----------|-----------|----------|------------|--|--|--|
|                                                                                                 | Temperature<br>(°C)           | pН       | $L^*$     | a*       | <i>b</i> * |  |  |  |
| Hot carcass lactic acid application only                                                        |                               |          |           |          |            |  |  |  |
| Acidified sodium chlorite <sup>B</sup>                                                          | 7.95bcdef                     | 5.79ab   | 60.23a    | 17.70abc | 20.55ab    |  |  |  |
| Beefxide <sup>C</sup>                                                                           | 8.25abcd                      | 5.69abcd | 53.94de   | 19.45ab  | 19.99abc   |  |  |  |
| Lactic acid <sup>D</sup>                                                                        | 7.40defgh                     | 5.69cd   | 58.44ab   | 16.15c   | 18.13bcd   |  |  |  |
| Control <sup>E</sup>                                                                            | 8.85a                         | 5.72abcd | 56.08bcde | 18.56abc | 21.24a     |  |  |  |
| Hot water applied to hot carcass followed by hot                                                |                               |          |           |          |            |  |  |  |
| carcass lactic acid application                                                                 |                               |          |           |          |            |  |  |  |
| Acidified sodium chlorite                                                                       | 6.54hi                        | 5.71abcd | 58.17ab   | 15.73c   | 16.44d     |  |  |  |
| Beefxide                                                                                        | 8.58abc                       | 5.72abcd | 52.27e    | 19.17abc | 18.40abcd  |  |  |  |
| Lactic acid                                                                                     | 8.76ab                        | 5.74abcd | 52.41e    | 17.75abc | 18.15bcd   |  |  |  |
| Control                                                                                         | 7.54cdefg                     | 5.78abc  | 55.88bcde | 17.70abc | 18.94abcd  |  |  |  |
| Hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a |                               |          |           |          |            |  |  |  |
| pre-fabrication cold forequarter lactic acid                                                    |                               |          |           |          |            |  |  |  |
| spray                                                                                           |                               |          |           |          |            |  |  |  |
| Acidified sodium chlorite                                                                       | 5.06k                         | 5.79abc  | 55.17bcde | 20.10a   | 20.61ab    |  |  |  |
| Beefxide                                                                                        | 5.94ij                        | 5.69bcd  | 58.89ab   | 15.70c   | 16.81cd    |  |  |  |
| Lactic acid                                                                                     | 8.44abc                       | 5.63d    | 54.40cde  | 17.99abc | 18.98abcd  |  |  |  |
| Control                                                                                         | 7.24efgh                      | 5.81a    | 55.29bcde | 17.41bc  | 18.16bcd   |  |  |  |
| Hot water applied to hot carcass followed by hot                                                |                               |          |           |          |            |  |  |  |
| carcass lactic acid application, followed by a                                                  |                               |          |           |          |            |  |  |  |
| pre-fabrication cold forequarter acidified                                                      |                               |          |           |          |            |  |  |  |
| sodium chlorite spray                                                                           |                               |          |           |          |            |  |  |  |
| Acidified sodium chlorite                                                                       | 7.06fgh                       | 5.73abcd | 56.86abcd | 19.58ab  | 20.75ab    |  |  |  |
| Beefxide                                                                                        | 5.08jk                        | 5.82a    | 55.01bcde | 18.18abc | 18.68abcd  |  |  |  |
| Lactic acid                                                                                     | 8.36abcd                      | 5.70abcd | 57.24abcd | 18.08abc | 18.93abcd  |  |  |  |
| Control                                                                                         | 8.41abc                       | 5.67d    | 55.74bcde | 19.57ab  | 20.44ab    |  |  |  |
| Hot water applied to hot carcass followed by hot                                                |                               |          |           |          |            |  |  |  |
| carcass lactic acid application, followed by a                                                  |                               |          |           |          |            |  |  |  |
| pre-fabrication cold forequarter Beefxide spray                                                 |                               |          |           |          |            |  |  |  |
| Acidified sodium chlorite                                                                       | 6.72ghi                       | 5.70abcd | 58.50ab   | 17.80abc | 19.98abc   |  |  |  |
| Beefxide                                                                                        | 8.22abcde                     | 5.66d    | 57.32abc  | 18.31abc | 19.40abc   |  |  |  |
| Lactic acid                                                                                     | 8.40abc                       | 5.74abcd | 57.53abc  | 19.31ab  | 20.55ab    |  |  |  |
| Control                                                                                         | 9.22a                         | 5.73abcd | 59.08ab   | 18.09abc | 20.06abc   |  |  |  |

Means within the same column lacking a common letter (a-k) differ (P < 0.05).



A Following carcass treatments, trimmings were assigned to one of four treatment groups (acidified sodium chlorite, Beefxide, lactic acid or control). Trimmings were sprayed following forequarter fabrication, and were subsequently held in cold storage for 48 h prior to grinding.

B Acidified sodium chlorite was applied at room temperature (approximately 25°C).
C Beefxide was applied at approximately 55°C.
D Lactic acid was applied at approximately 55°C.
E No antimicrobial intervention was applied to control trimmings.

Table 2. Least squares means stratified by carcass and trimmings treatment<sup>A</sup> combinations for beef patty CIE color space values  $(L^*, a^*, b^*)$  across shelf-life days.

|                                                             | $L^*$  |         | a*      |        |         | <i>b</i> * |         |        |         |
|-------------------------------------------------------------|--------|---------|---------|--------|---------|------------|---------|--------|---------|
| Treatment combinations                                      | d 1    | d 3     | d 5     | d 1    | d 3     | d 5        | d 1     | d 3    | d 5     |
| Hot carcass lactic acid application only                    |        |         |         |        |         |            |         |        |         |
| Acidified sodium chlorite <sup>B</sup>                      | 55.83a | 55.70a  | 50.50b  | 15.79a | 10.44b  | 13.81a     | 20.09ab | 18.98b | 20.64a  |
| Beefxide <sup>C</sup>                                       | 53.15a | 52.62a  | 50.93a  | 18.06a | 11.30b  | 10.86b     | 19.56a  | 16.50b | 18.08ab |
| Lactic acid <sup>D</sup>                                    | 53.04a | 55.03a  | 52.45a  | 17.39a | 10.57b  | 9.90b      | 19.66a  | 16.91b | 19.03a  |
| Control <sup>E</sup>                                        | 55.15a | 55.80a  | 54.03a  | 17.06a | 11.29b  | 10.57b     | 20.10a  | 17.80a | 20.10a  |
| Hot water applied to hot carcass followed by hot carcass    |        |         |         |        |         |            |         |        |         |
| lactic acid application                                     |        |         |         |        |         |            |         |        |         |
| Acidified sodium chlorite                                   | 50.17a | 48.58a  | 46.92a  | 15.95a | 10.23b  | 11.77b     | 17.94a  | 16.26a | 18.71a  |
| Beefxide                                                    | 50.80a | 49.97a  | 49.11a  | 15.36a | 11.49a  | 11.08a     | 17.64a  | 16.50a | 18.62a  |
| Lactic acid                                                 | 49.42a | 51.97a  | 49.68a  | 15.60a | 8.38b   | 10.12b     | 17.22ab | 14.96b | 17.93a  |
| Control                                                     | 51.38a | 52.16a  | 49.00a  | 15.93a | 8.86b   | 11.22b     | 18.73a  | 15.73b | 19.04a  |
| Hot water applied to hot carcass followed by hot carcass    |        |         |         |        |         |            |         |        |         |
| lactic acid application, followed by a pre-fabrication cold |        |         |         |        |         |            |         |        |         |
| forequarter lactic acid spray                               |        |         |         |        |         |            |         |        |         |
| Acidified sodium chlorite                                   | 49.92a | 52.58a  | 48.23a  | 17.54a | 11.74b  | 9.38b      | 19.15a  | 17.34a | 17.65a  |
| Beefxide                                                    | 49.57b | 52.79a  | 51.44ab | 14.55a | 8.70b   | 8.61b      | 17.59a  | 16.05a | 17.40a  |
| Lactic acid                                                 | 51.26a | 51.35a  | 51.69a  | 14.01a | 11.23ab | 7.76b      | 17.35a  | 16.19a | 15.54a  |
| Control                                                     | 51.17a | 51.67a  | 50.50a  | 16.29a | 12.26ab | 9.14b      | 18.24a  | 16.77a | 16.86a  |
| Hot water applied to hot carcass followed by hot carcass    |        |         |         |        |         |            |         |        |         |
| lactic acid application, followed by a pre-fabrication cold |        |         |         |        |         |            |         |        |         |
| forequarter acidified sodium chlorite spray                 |        |         |         |        |         |            |         |        |         |
| Acidified sodium chlorite                                   | 53.83a | 54.31a  | 50.74b  | 17.31a | 11.44b  | 12.90b     | 19.84a  | 17.57b | 19.83a  |
| Beefxide                                                    | 52.17a | 50.89ab | 48.21b  | 17.59a | 11.44c  | 14.39b     | 19.16a  | 16.72b | 19.51a  |
| Lactic acid                                                 | 53.22a | 54.43a  | 52.20a  | 17.08a | 10.07b  | 11.82b     | 19.47a  | 16.63b | 18.90a  |
| Control                                                     | 52.42a | 52.51a  | 50.25a  | 17.78a | 12.31b  | 12.05b     | 19.70a  | 17.41b | 19.95a  |
| Hot water applied to hot carcass followed by hot carcass    |        |         |         |        |         |            |         |        |         |
| lactic acid application, followed by a pre-fabrication cold |        |         |         |        |         |            |         |        |         |
| forequarter Beefxide spray                                  |        |         |         |        |         |            |         |        |         |
| Acidified sodium chlorite                                   | 55.80a | 55.30a  | 53.92a  | 15.89a | 11.08b  | 10.65b     | 19.49a  | 17.58a | 17.99a  |
| Beefxide                                                    | 53.93a | 54.47a  | 50.91a  | 16.79a | 11.36b  | 11.65b     | 19.40a  | 17.50b | 18.13ab |
| Lactic acid                                                 | 55.89a | 55.07a  | 53.85a  | 16.78a | 11.49b  | 9.57b      | 19.69a  | 16.94b | 17.96b  |
| Control                                                     | 53.22a | 53.96a  | 53.24a  | 17.57a | 10.66b  | 10.15b     | 20.48a  | 17.52b | 18.67b  |



Means within the same hot carcass treatment grouping and within like CIE color space values lacking a common letter (a-c) differ (P < 0.05).

A Following carcass treatments, trimmings were assigned to one of four treatment groups (acidified sodium chlorite, Beefxide, lactic acid or control). Trimmings were sprayed following forequarter fabrication, and were subsequently held in cold storage for 48 h prior to grinding.

B Acidified sodium chlorite was applied at room temperature (approximately 25°C).

C Beefxide was applied at approximately 55°C.

Lactic acid was applied at approximately 55°C.

<sup>&</sup>lt;sup>E</sup> No antimicrobial intervention was applied to control trimmings.

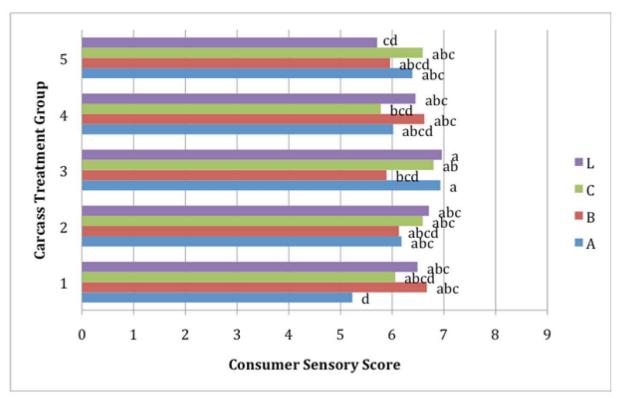



Figure 1. Spraying lactic acid hot carcass intervention.



Figure 2. Shelf-life evaluation.





**Figure 3.** Least squares means for consumer sensory scores of overall like (9 = like extremely; 1 = dislike extremely) for beef patties stratified by carcass treatment group (1 = control group; hot carcass lactic acid application only; 2 = hot water applied to hot carcass followed by hot carcass lactic acid application; 3 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter lactic acid spray; 4 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter acidified sodium chlorite spray; 5 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter Beefxide spray) and trimmings treatment group (A = trimmings sprayed with acidified sodium chlorite; B = trimmings sprayed with Beefxide; C = control, no antimicrobial application; L = trimmings sprayed with lactic acid). Means lacking a common letter (a-d) differ (P < 0.05).



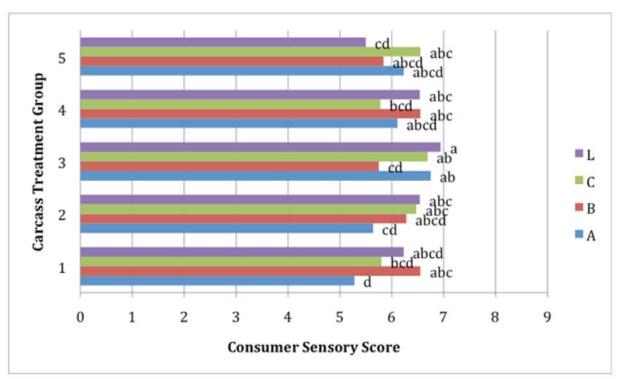



Figure 4. Least squares means for flavor like (9 = like extremely; 1 = dislike extremely) for beef patties stratified by carcass treatment group (1 = control group; hot carcass lactic acid application only; 2 = hot water applied to hot carcass followed by hot carcass lactic acid application; 3 = hot water applied to hot carcass followed by a pre-fabrication cold forequarter lactic acid spray; 4 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter acidified sodium chlorite spray; 5 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter Beefxide spray) x trimmings treatment group (A = trimmings sprayed with acidified sodium chlorite; B = trimmings sprayed with Beefxide; C = control, no antimicrobial application; L = trimmings sprayed with lactic acid). Means lacking a common letter (a-d) differ (P < 0.05).



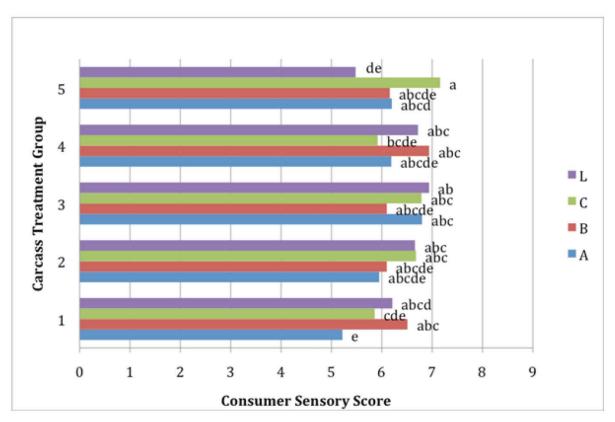



Figure 5. Least squares means for consumer sensory scores of beefy flavor like (9 = like extremely; 1 = dislike extremely) for beef patties stratified by carcass treatment group (1 = control group; hot carcass lactic acid application only; 2 = hot water applied to hot carcass followed by hot carcass lactic acid application; 3 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter lactic acid spray; 4 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter acidified sodium chlorite spray; 5 = hot water applied to hot carcass followed by hot carcass lactic acid application, followed by a pre-fabrication cold forequarter Beefxide spray) and trimmings treatment group (A = trimmings sprayed with acidified sodium chlorite; B = trimmings sprayed with Beefxide; C = control, no antimicrobial application; L = trimmings sprayed with lactic acid). Means lacking a common letter (a-e) differ (a-e) differ

